Almost complex structures on connected sums of complex projective spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Complex Projective Structures and Their Morphisms

We discuss almost complex projective geometry and the relations to a distinguished class of curves. We present the geometry from the viewpoint of the theory of parabolic geometries and we shall specify the classical generalizations of the concept of the planarity of curves to this case. In particular, we show that the natural class of J-planar curves coincides with the class of all geodesics of...

متن کامل

Complex Projective Structures

In this chapter we discuss the theory of complex projective structures on compact surfaces and its connections with Teichmüller theory, 2-and 3-dimensional hyperbolic geometry, and representations of surface groups into PSL 2 (C). Roughly speaking, a complex projective structure is a type of 2-dimensional geometry in which Möbius transformations play the role of geometric congru-ences (this is ...

متن کامل

biquaternions lie algebra and complex-projective spaces

in this paper, lie group structure and lie algebra structure of unit complex 3-sphere     are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of     and the special complex unitary matrices    (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers    .  the relat...

متن کامل

Almost Complex Rigidity of the Complex Projective Plane

An isomorphism of symplectically tame smooth pseudocomplex structures on the complex projective plane which is a homeomorphism and differentiable of full rank at two points is smooth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of K-Theory

سال: 2019

ISSN: 2379-1691,2379-1683

DOI: 10.2140/akt.2019.4.139